8. Eletricity

Electricity is one of the fundamental inventions for human development. Virtually all of our activities depend in some way on electricity. However, if on the one hand it brings enormous benefits, electricity generation has a counterpart in being one of the largest global consumers of resources, especially in relation to the emission of greenhouse gases. Fossil fuels, mainly coal and natural gas, lead by far the global generation of electricity.

references and bibliography

1 IEA. “Data and statistics”. : iea.org/data-and-statistics

2 Faria, F. A. M.; Jaramillo, P.; Sawakuchi, H. O. et al. “Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs”. Environmental Research Letters, vol. 10 (12), 17 nov. 2017.

3 Von Sperling, E. “Hydropower in Brazil: Overview of Positive and Negative Environmental Aspects”. Energy Procedia, vol. 18, pp. 110–118, 2012.

4 Gonçalves, A. R.; Costa, R. S.; Pereira, E. B.; Martins, F. R. “Cenários de expansão da geração solar e eólica na matriz elétrica brasileira”. VII Congresso Brasileiro de Energia Solar – Gramado, 17–2 abr. 2018.

5 Pereira, E. B. “Fontes Eólica e Solar: oportunidades e desafios”. Instituto Nacional de Pesquisas Espaciais (Ministério da Ciência, Tecnologia, Inovações e Comunicações), 23 out. 2019. confea.org.br/sites/default/files/uploads-imce/INPE_ENIO_PDF.pdf

6 Empresa de Pesquisa Energética. “Balanço Energético Nacional 2019”. epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2019

7 Global Wind Energy Council. “GWEC | Global Wind Report 2018”. Abr. 2019. abeeolica.org.br/wp-content/uploads/2019/07/GWEC2018-compactado.pdf

8 IPCC. “Renewable Energy Sources and Climate Change Mitigation”. 2011. pcc.ch/report/renewable-energy-sources-and-climate-change-mitigation/

9 Jardim, C. S.; SalamoniI, I.; RütherI, R. et al. “O potencial dos sistemas fotovoltaicos interligados à rede elétrica em áreas urbanas: dois estudos de caso”. An. 5. Enc. Energ. Meio Rural, 2004.

10 Fraunhofer Institute. “Renewable Sources Contribute More Than 40 Percent to Germany’s Public Net Electricity Generation in 2018”. 4 jan. 2019. ise.fraunhofer.de/en/press-media/news/2019/renewable-sources-contribute-more-than-40-percent-to-germanys-public-net-electricity-generation-in-2018.html

11 CPUC. “Resolution E-4949. Pacific Gas and Electric request approval of four energy storage facilities with the following counterparties: mNOC, Dynegy, Hummingbird Energy Storage, LLC, and Tesla”. 8 nov. 2018. docs.cpuc.ca.gov/PublishedDocs/Published/G000/M238/K048/238048767.PDF

12 Nykvist, B.; Nilsson, M. “Rapidly falling costs of battery packs for electric vehicles”. Nature Climate Change, vol. 5, pp. 329–32, 2015.

13 US Department of Energy. “Global Energy Storage Database”.299 energystorageexchange.org/

14 IRENA. “Electricity Storage and Renewables: Costs and Markets to 2030”. Out. 2017. irena.org/-/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Storage_Costs_2017.pdf

15 ANEEL. “Biomassa”. In: Atlas de Energia Elétrica – 2ª Edição. aneel.gov.br/aplicacoes/atlas/pdf/05-Biomassa(2).pdf

16 EPE. “Termelétricas a biomassa nos leilões de energia no Brasil”. epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-433/EPE-DEE-089-2019-r0%20-%20NT%20BIOMASSA%20LEILOES.pdf

17 Piñas, J. A. V.; Venturini, O. J.; Lora, E. E. S. et al. “Aterros sanitários para geração de energia elétrica a partir da produção de biogás no Brasil: comparação dos modelos LandGEM (EPA) e Biogás (Cetesb)”. R. bras. Est. Pop., vol. 33 (1), pp.175–88, jan./abr. 2016.

18 Candiani, G.; Viana, E. “Emissões fugitivas de metano em aterros sanitários”. GEOUSP Espaço e Tempo (Online), vol. 21 (3), pp. 845–57, 2017. revistas.usp.br/geousp/article/view/97398

19 US Environmental Protection Agency. “Basic Information about Landfill Gas”. epa.gov/lmop/basic-information-about-landfill-gas

20 Nascimento, M. C. B.; Freire, E. P.; Dantas, F. A. S.; Giansante, M. B. “Estado da arte dos aterros de resíduos sólidos urbanos que aproveitam o biogás para geração de energia elétrica e biometano no Brasil”. Eng. Sanit. Ambient., vol. 24 (1), jan./fev. 2019.

21 Lei 12.305 de 2 de agosto de 2010. planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm

22 Dos Santos, P. E. B. M.S. Thesis: Legal aspects of introducing waste-to-energy (WTE) technology in Sao Paulo State of Brazil: The case studies of URE Barueri and city of Sao Paulo. Department of Earth and Environmental Engineering, Fu Foundation School of Engineering & Applied Science, Columbia University, 2016. gwcouncil.org/wp-content/uploads/2017/11/thesis-paulo-2016-04.pdf

23 Jornal de Barueri. “URE Barueri aguarda emissão de alvará de construção para início das obras” 3 maio 2019. jornaldebarueri.com.br/ure-barueri-aguarda-emissao-de-alvara-de-construcao-para-inicio-das-obras

24 CEWEP. “Municipal waste treatment in 2016”. cewep.eu/wp-content/uploads/2017/07/Graph-3-treatments-2016.pdf

25 Decreto 10.117 de 19 de novembro de 2019. : in.gov.br/web/dou/-/decreto-n-10.117-de-19-de-novembro-de-2019-228634453

26 Jarvis, S.; Deschenes, O.; Jha, A. “The Private and External Costs of Germany’s Nuclear Phase-out”. NBER Working Paper Series, n. 26.598, dez. 2019.

27 World Nuclear Association. World Nuclear Performance Report 2020. https://www.world-nuclear.org/our-association/publications/global-trends-reports/world-nuclear-performance-report.aspx

28 US Energy Information Administration. “Capital Cost Estimates for Utility Scale Electricity Generating Plants”. Nov. 2016. https://www.world-nuclear.org/our-association/publications/global-trends-reports/world-nuclear-performance-report.aspx

29 IEA; NFA. “Projected Costs of Generating Electricity: 2015 Edition”. oecd-nea.org/ndd/pubs/2015/7057-proj-costs-electricity-2015.pdf

30 Instituto Escolhas. “Custos e benefícios da Termelétrica Angra 3”. Dez. 2018. escolhas.org/wp-content/uploads/2018/12/Final_PSR_Instituto-Escolhas_Policy-Paper_Angra_2018-12-13.pdf

31 Ocean Energy Forum. “Ocean Energy Strategic Roadmap 2016, building ocean energy for Europe”. 2016 webgate.ec.europa.eu/maritimeforum/sites/maritimeforum/files/OceanEnergyForum_Roadmap_Online_Version_08Nov2016.pdf

32 Shadman, M.; Silva, C.; Faller, D. et al. “Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil”. Energies, vol. 12(19), 2019.

33 Mendoza, E.; Lithgow, D.; Flores, P. et al. “A framework to evaluate the environmental impact of OCEAN energy devices”. Renewable and Sustainable Energy Reviews, vol. 112, pp. 440–9, set. 2019.

34 IEA. “World Energy Outlook 2019: Electricity”. 300 iea.org/reports/world-energy-outlook-2019/electricity

35 EPE. “Informe: Custos de Gás Naturalno Pré-Sal Brasileiro”. Abr. 2019. epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-368/INFORME%20-%20Custos%20de%20Gás%20Natural%20no%20Pré-Sal%20Brasileiro.pdf

36 Operador Nacional do Sistema Elétrico. “Plano Anual da Operação Energética dos Sistemas Isolados para 2020”. 37 Brasil Bio Fuels. “Energia” ons.org.br/AcervoDigitalDocumentosEPublicacoes/DPL-REL-0248-2019%20-%20PEN%20SISOL%202020.pdf